Quick Start with Python intermediate

Production-ready compilation flags and build commands

Python Decorators: QUICK START (5s)

Copy → Paste → Live

def timer(func):
    import time
    def wrapper(*args, **kwargs):
        start = time.perf_counter()
        result = func(*args, **kwargs)
        print(f'{func.__name__} took {time.perf_counter()-start:.4f}s')
        return result
    return wrapper

@timer
def process_data():
    return sum(range(1000000))

process_data()
$
process_data took 0.0234s
499999500000
āœ… Learn more in Python decorators step by step section
⚔ 5s Setup

When to Use Python intermediate

Decision matrix per scegliere la tecnologia giusta

IDEAL USE CASES

  • High-concurrency web applications using asyncio for handling 10,000+ simultaneous connections with Python decorators

  • Data pipeline processing with generators for memory-efficient ETL workflows processing terabyte-scale datasets

  • API framework development using context managers and metaclasses for clean resource management and OOP patterns

AVOID FOR

  • Simple CRUD scripts where Python intermediate decorators add unnecessary complexity (use basic functions)

  • CPU-intensive numerical computing requiring low-level optimization (Python vs C++ for performance-critical code)

  • Beginners learning programming fundamentals before mastering Python generators and context managers basics

Core Concepts of Python intermediate

Production-ready compilation flags and build commands

#1

Python Decorators: Function Wrappers and Closures

Decorators modify function behavior without changing source code. Use @syntax for clean composition. Supports wraps() for preserving metadata. See Python decorators tutorial examples below

āœ“ Solution
Use *args, **kwargs in wrapper: def wrapper(*args, **kwargs): return func(*args, **kwargs)
+58% code reusability
#2

Python Generators: Memory-Efficient Iterators

Generators use yield to produce values lazily, consuming minimal memory. Generator expressions provide concise syntax. Support send() and close() methods

āœ“ Solution
Use return instead of raise StopIteration in Python 3.7+
+95% memory efficiency for large datasets
#3

How to use Python Context Managers: with Statement

Context managers handle resource setup/cleanup with __enter__ and __exit__. contextlib.contextmanager decorator simplifies creation. Automatic exception handling

99.9% resource leak prevention vs manual try-finally
#4

Python Asyncio: Concurrent I/O Operations

Async/await syntax for non-blocking I/O. Event loop schedules coroutines cooperatively. asyncio.gather() for parallel execution. aiohttp for async HTTP

āœ“ Solution
Use asyncio.run() in main or nest_asyncio.apply() for Jupyter
#5

Python OOP advanced: Metaclasses and Class Customization

Metaclasses control class creation using type(). __init_subclass__ for simpler hooks. Descriptor protocol for computed attributes. Property decorators for getters/setters

+42% framework flexibility and extensibility